AD~A092 625 CARNEGIE=-MELLON UNIV PITTSBURGM PA DEPT OF COMPUTER =--ETC F/6 9/2
AN OPTIMALITY THEORY OF CONCURRENCY CONTROL FOR DATABASES.{U)
NOV 80 H KUN6s» C H PAPADIMITRIOU N00014=76=C-0370

N|

I8

UNCLASSIFIED

]
J

=
N
[

O
FeEFEEE

EEEE
E

.
1
E
FE
=
N
o

Ty TER I

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ADA092625

DDC FE copy

LABORATORY FOR
COMPUTER SCIENCE

> INSTITUTE OF
TECHNOLOGY

AN OPTIMALITY THEORY OF CONCURRENCY CONTROL
FOR DATABASES

Hsing-Tsung Kung
Christos H. Papadimitriou

DTIC

ELECTE
Noverber 1980 SDECS 1980

D

'mis_nesearchis supported in part by the National ‘
Science Foundation under Grants MCS 75-222-55, ;
MCS 77-01193,MCS 77-05314, the Office of Naval -
Research under Contract N00014-76-C-0370
and a Miller Fellowship. :

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 3
i

PR

e ———— e o n mien e e e v e e s
DISTRIBUJ IO STATEMENT A

Distribution U’rrx_li.mi_tyewc_l

Approved for public releqse; Q n

1O

B L . e " hl ':*4<' :
Vel 0 e 5 Al AR 17 S S LA
cuale abe A T LARIER S «E I AN AT T

e il T

LRSSk
g2 Gl

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

T R AR 2 e A A A Mt AT S 1 S L Lt e s

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO.
MIT/LCS/™M-185 D~ 4019

3. RECIPIENT'S CATALOG NUMBER

4§

4. TITLE (and Subtitie)

An Optimality Theory of Concurrency Control

5. TYPE OF REPORT & PERIOD COVERED

April 1979

for Databases

§. PERFORMING ORG. REPORT NUMBER

e e
¥
]

7. AUTHOR(s)

H.T. Kung and C.H. Papadimitriou

- MIT/LCS /mv-185 |
9. CONTRACT OR GRANT NUMBER(s)

MCS 75~222-55 .- - i
MCS 77-01193. MCS 77-05314
\ N0O0014-76~C=0370 72/

9. PERFORMING ORGANIZATION NAME AND ADDRESS

/Laboratory for Camputer Sciencev

545 Technology Square -
Canbridge, MA 02139

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

t1. CONTROLLING OFFICE NAME. AND ADDRESS

ONR/Dept. of Navy .. WSF/Associate Prog.Directo
Information SysaRrograhr’ Office ‘Camp.Activities
Arlington, VA 24 ..*()_ shingd o » (]

12. REPORT DATE

1980

13 NUMBER OF PAGES
17

Veka1g I
14. MONITORING AGENCY NANILB ADDRESS(If different.fom Controlling Oflice)

Ce

15. SECURITY CLASS. (of this teport)

Unclassified

15a. DECL ASSIFICATION/OOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

its distribution is unlimited

This document has been approved for public release and sale;

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if sary and |

Database Concurrency Control
Schedulers

Performance vs. Information of Schedﬁlers
Optimal Schedulers

ity by dblock number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

A concurrency control mechanism (or a scheduler) is the camponent of a database
system that safeguards the consistency of the database in the presence of
interleaved accesses and update requests. We formally show that the performance
of a scheduler, i.e., the amount of paralleliam that it supports, depends
explicitly upon the amount of information that is available to the scheduler. |
We point out that most previous work on concurrency control is simply concerned
with specific points of this basic trade-off between performance and informatior{.

EOITION OF 1 NOV 68 ($ OBSOLETE

0D .38 1473

UNGLASS] it

et R A B e vy e
SECURITY CLASSIFICATION OF TNIS PAGE (When Dets Entered)

!
3

JEEUATY CLASRAICATION OF YWis P aSE(Vhen Dale Bntored) ‘

20. In fact, several of these approaches are shown to be optimal for the
amount of information that they use.

Accession For y,

(NTIS GRAaI X
DTIC TAB
Unannounced 0
Justification

B DTIC

| Distribution/ ELECTE

Aygilability Codes
Aveil and;or DECS 1980

Dist Speaial

Q| >

SECURITY CLASBIPICATION OF THIS PAGE(When Date Bntered)

RIS PR PRI 2 v,

& i

.

T IN

T s BB - 0. A ar A P O

~1)An Optimality Theory of Concurrency Control :
e N for Databases, ‘

oo e 2

u HSI'UJ"T //‘7 0 b 3 C/’L. "”/.Sfds l/‘./ﬂ \ ﬂ/ , Ce e
| R) I

H. T. Kung v

i 'A‘) J/] Department of Computer Science
4 - Carnegic-Mellon University

Pittsburgh, Pennsylvania 15213 / / /Voy \ /

eI

C. H. Papadimitriou
Laboratory for Computer Science

Massachusetts Institute of Technology
~_ Cambridge, Massachusetts 02139

A IK)NAM:W—G zfé*// NVSE=-MTiMM-4 2274

April 1979 ~ h

S PO A e

[Last reviscd September 1980]

(This paper is issued simultaneously as a CMU and MIT Technical Memorandum)
)] lbh»l?b/ ot m oy

KEYWORDS AND PHRASES: Database Concurrency Control, Schedulers,
Performance vs. Information of Schedulers, Optimal Schedulers.

~

This research is supported in part by the National Science Foundation under Grants MCS 75-222-55,
MCS 77-01193, MCS 77-05314, the Office of Naval Rescarch under Contract N00014-76-C-0370, and a Miller

Fellowship.

Abstract

\

A concurrency control mechanism (or a scheduler) is the component of a database system that safeguards
the consistency of the database in the presence of interleaved accesses and update requests. We formally
show that the performance of a scheduler, i.c., the amount of parallelism that it supports, depends explicitly
upon the amount of information that is available to the scheduler. We point out that most previous work on
concurrency control is simply concerned with specific points of this basic trade-off between performance and

information. In fact, several of these approaches are shown to be optimal for the amount of information that

they use,
Y

/

S £

(Y

e Eaalan o et e st SRETE R R e R e e T e e R

s

SECTION 1 INTRODUCTION 1

1. Introduction

A database system may intcract with many transactions in an intcrleaved manner. Even if we assume that
cach such individual transaction is correct (that is, it preserves the consistency of the databases when run by
itsclf), the interleaved mode of operation may result in inconsistencies (sce, for example, [2]). It is the task of
the concurrency control mechanism of the database system, called scheduler in this paper, to safeguard the
consistency of the database by granting or rcjecting the execution of atomic sieps of transactions, when

requests for such executions are made.

The design of schedulers for databases has proved to be a non-trivial problem, and some theoretical work
on the subject has appeared (see, for example, [2, 6,7, 9]). Scveral solutions to this problem have been
proposed under a varicty of assumptions. In this paper, we give a uniform framework for evaluating these
solutions, and, in some cases, for establishing their optimality. A scheduler is evaluated in terms of its
performance, which is measured by the set of request scquences that the scheduler can authorize for cxcchtion
without any delay. This sct of request sequences is called the fixpoint set of the scheduler. The idea is that the
richer this set is, the more likely that no delays will be imposed by the scheduler. In this sense the fixpoint set

is a fair measure of the parallelism supported by the scheduler, and therefore of its performance.

We observe that there is a trade-off between scheduler performance and the information used by the
scheduler. The latter is the minimum knowledge about the database and the transactions that the scheduler
requires in order to function correctly. Typical information that could be useful to the scheduler is syntactic
information about the transactions (that is, a flowchart with the names of the database entities accessed and
updated at each step); or semantic information about the meaning of the data and the operations performed;
or the integrity constraints, the consistency requirements that the database must satisfy. Ideally, a scheduler
would like to have a perfect knowledge of all these three components of information. It is usually necessary,
however, to have the scheduler operate at some imperfect level of information. There are many reasons for
this. Some information (e.g., integrity constraints) may not be known explicitly even to the designer of the
database. If semantic information is given in some powerful enough language (c.g., arithmetic) then it may
not be possible to reason about it effectively. Finally, to utilize sophisticated information may render the
scheduling problem combinatorially intractable -- see [6] for a case in which the ability of simply
distinguishing between read and write operations makes the problem NP-complete. It should be intuitively
clear that the more information the scheduler has, the better job it can do in enriching its fixpoint sct, and
therefore increasing its performance. We capture this intuitive trade-off in an equation (Thcorems 3.1) and
exhibit several specific instances for which well known concurrency principles correspond to optimal

schedulers (optimal with respect to the information that they use). For example, in our framework we can

o g

T TR Sy,

SECTION 1 INTRODUCTION 2

formally show that serializability (which has been adapted in an ad hoc manner in virtually all the

concurrency control literature) is indced the right notion of correctness when only syntactic information is

availablc (as is usually the case). If semantic or integrity information is available, then more liberal
correctness criteria may be uscd (sce, for cxample, [3, 4]). We also prove that some strict version of the two-
phasc locking technique of [2] is the best possible principle when syntactic information is acquired in an

incremental manner.

The paper is organized as follows. In Section 2 we introduce our model for transaction systems, carefully
distinguishing among the syntactic, semantic, and integrity constraint components. In Section 3 we formally

introduce the notion of schedulers, and develop the basic tools for studying the information vs. performance

trade-off. Speciﬁc examples of optimal schedulers are presented in Section 4.

PRS2
P s 0

5 v S h T s

L SRR A TS Y T W O ATV AT IR S0 (TS TN ML Tt o SN SIMER € " S Do TR T e o

SECTION 2 TRANSACTION SYSTEMS

2. Transaction Systems

2.1 Definition of a Transaction System
By a transaction system we mean a database (that is, data and integrity constraints) together with a set of

statically prespecified transaction programs. A transaction system can be formally defined in terms of three

components: syntax, semantics, and integrity constraints.

2.1.1. Syntax
A transaction system T is a finite set of transactions, {T,, ..., T n}, n > 1,where each transaction T, is a finite :

sequence of transaction steps, Ty, ..., T, . The n-tuple of integers (m, ..., m,) is called the format of the
1

transaction system. For simplicity, we assume that all transaction systems under consideration have the same,

g fixed format.
!
i

The transactions in a transaction system opcrate on a sct of variable names. The variables are abstractions of

data entities, whose granularity is not important for our development. The variables can represent bits, files

e T e

' or records, as long as they are individually accessible. The sct of variable names is denoted by V. Besides the

PRI

(global) variables in V, cach transaction T, is associated with local variables, t,, ..., t,_ . A transaction step Ti.l
1

in T, can be thought of as the indivisible execution of the following two instructions:

. — X,
ij
xij — r];i(til’ veus tij)’

where fij is a j-place function symbol. That is to say, at step Tﬁ the current value of some global variable Xy € \Y

is stored at a local place t; and then x; is assigned a new value, based on function f; and knowledge available
to the transaction T, at this time, namely, the valucs of all "declared™ local variables t,), ..., Y The meaning of

Ao TR ST N T Y T

function fij is open to arbitrary interpretations at this point. For example, it could be the identity function on
L in which case Tij is simply a read step. Similarly, if all f (¢, , ..., t,) with k > j arc independent of & then T“ :

is a write step.

NI AT R ORI TR N DA ey e ks

SECTION 2 TRANSACTION SYSTEMS 4

2.1.2. Semantics
Associated with each variable name v € V we have an enumerable set D{(v), the domain of v, consisting of
all possible valucs that the variable v can assume -- typically the integers, the Boolean values, or finite strings.

A local variable 4 has always the same domain as Xy

A state of a transaction system T is a triple (J, L, G), where

e Jisan n-tuple of integers (j, .. .j) with j, (1 < j. < m,+1), specifying the next step of transaction
T;. The j;'s are thus program counters. Ifj jj=m, +i then transaction T, has terminated.

o L. is an element in [T D(x,)) representing the values of all declared local vanables

1sisn(1<j<j;

o G is an element in IT ., IXv) represcnting the current values of alf global variables v € V.

The semantics of T associate with the function symbol f.. at each step T . a function
@i g s;D("u:) — D(x,) which is the interpretation of f Thus the exccution of a transaction step maps
one state of the transaction system into another one. More precisely, if transaction step Tii is eligible for
exccution at state (J, L, G), that is, if j, < m,, then its execution modifies the three components of the state as
follows:

i+l
t. - Xip
X+ ‘pu(t’l 0t ij)
This view of single transaction steps can be extended to sequences of transaction steps in the obvious way.

2.1.3. Integrity Constraints

The integrity constraints of a transaction system T correspond to a subset IC of the product "vevD(")- A
state (J, 1., G) of T is said to be consistent if G belongs to IC. A scquence of transaction steps is said to be
correct if a serial execution of the steps in the sequence will map any consistent state of the transaction system
into a consistent state.

The basic assumption throughout the paper is that all transactions in a transaction system are correct.

LTI RN ROTIO A IO (LN AR YRR TR T T R ST 3 R

N e R P MTWPRDICZ Y,

SECTION 2 TRANSACTION SYSTEMS

2.2 Example

R R T .

Consider a transaction system consisting of three transactions T,, T,, and TJ, that access two banking .

accounts A and B in the following way:

o T, transfers $100 from A to B if A has enough funds and the balance of B is below $100.

o T, withdraws $50 from B and increments a counter C, if B has enough funds.

o T, is an auditing transaction that computes the sum S of A and B, and sets the counter C back to 0.

Syntax. ‘The set of global variable names is V = {A, B, S, C}. The xij’s are as follows:

xn=A,x12=B,xB=A

X,, = B, x,, = C,

2 27 g c
Xy = A Xp=BiXy=5,%y, =

.

'Thus the format of the transaction system is (3, 2, 4).

Semantics. For all v e V, D(v) is the set of natural numbers. Typical states would be as follows:

Lo IR I g ey

e(J.1,G)=((1, 1, 1), * (150, 50. 200, 0)). This is a possible state before any of the transactions has
started cxecution. We have A = $150, B = $50, S = $200, C = 0, and don't carc about the values of
local variables.

o (J. 1. G)=((2, 2, 9), (150; 50; 150, 0, 200), (150, 0, 150, 0)). In this state, A has not been decreased
but B has. The new S has been computed but C has not.

As for the operations performed by each step:

R e P I Ay YR T,

Pn= [Ju
Pp=it, 2 100 andt, < 100 then ¢, + 100 else t,
@,3 = ity 2 100 andty, < 100 then t, - 100 elset,

}
Py = ifty > 50 thent,, - 50 elset,, f
Py = ify; > 50 thenty, + 1 else ty, :
Pyn=ty ‘
Py =ty
Py = (‘,n th

Py

The integrity constraints may very well be the set of states for which A2 0,B>0,and A + B= S - 50C.

SECTION 3 SCHEDULES AND SCHEDULERS 6

3. Schedules and Schedulers'

3.1 Schedules
A schedule of a transaction system T is a permutation of the sct {Tij: l1<i<n 1 < j< mi} of stepsin T
such that in the permutation 'l‘ij comes before T, for j < k. We may think of a schedule as a possible strcam of
arriving cxecution requests, or, in a diffcrent context, as a sequence of transaction steps that defines the order
in which these exccution requests are granted exccution. The sct of all schedules of T is denoted by H(T).
Since this set depends only on the format of T and the format is assumed fixed, we shall write H for H(T). A
| schedule is said to be correct if its execution preserves the consistency of the database. The set of all correct
schedules of T is denoted by C(T). The set C(T) is always nonempty, since it at least contains (by our basic
assumption that all transactions are correct) all serial schedules, that is, all permutations # such that

n 1)=u'rr('I'iJ.)+1for1signancljgmi-l.

ij+
3.2 Schedulers

A scheduler (or concurrency control mechanism) transforms a stream of execution requests into a correct
schedule. This is achieved by properly granting or rejecting the exccution of arriving requests. (A rejected

request is rescheduled for exccution at some later time.) Thus, a scheduler for a transaction system T can be

viewed as a mapping S from H io C(T).

We measure the performance of a scheduler S by its fixpoint set P, defined as
Pg = {h ¢ H: S(h) = h}.
Clearly Pg must be a subset of C(T). The larger Py is, the more improbable it is that S will have to delay (or
reject) the execution of a transaction step, after such an execution is requested. We therefore consider the

inclusion-induced partial order on the sets Py as a "qualitative™ measure of scheduler performance.

3.3 Information

A level of information available to a scheduler S about a transaction system T is defined to be a set I of
transaction systems {T, T, T, ...} that contains T. Intuitively, if S is kept at this level of information, it knows
that the transaction system in question is among the transaction systems in 1, but docs not know exactly which.
Thus, S has to be a scheduler for all transaction systems T' ¢ I. For example, the set I could be the set of all
transaction systems that have the same syntax. This level of information corresponds to the case that a
scheduler has complete syntactic information, but no other information,

oy

R R e T ‘

ey

P TR TR 7 a2, e W

e e P RIS AT i 0 T R S TP RPN«

SECTION 3 SCHEDULES AND SCHEDULERS 1

Alternatively, we could view I as a function that maps any transaction system T to an object I(T) (¢ {0, 1}°).

Intuitively, I(1) is the information extracted from T by the operator I, for example, I(T) could be an encoding

of the syntax of T. The effect would be that T cannot be distinguished from the transaction systems T' that

have the same image I(T); in the notation of the previous paragraph, which we are going to follow henceforth,

I={T": KT =1KT)}.

‘The maximum possible information that a scheduler can have is, of course, the complete syntactic, scmantic

and integrity information about the transaction system in question; this corresponds to I = {T}. The

minimum information is the format (my, ..., m,); this corresponds to I being the set of all transaction systems

of the given format, with the single restriction that the transactions be correct -- by our basic assumption. The

more information available to the scheduler, the “better” scheduling results may be expected. We formally

capture this idea in the following theorem:

Theorem 3.1: For any scheduler S using information I, the fixpoint sct Py must satisfy:

Psc n.llel).
The proof of this theorem uscs a general adversary argument, instances of which we shall see many times in
the rest of the paper. The proof goes as follows. If there is a schedule h € Pg and a transaction system Tel
such that h is not correct for T that is, h (=S(h)) ¢ C(T'), then an adversary could “fool” the scheduler S by
choosing T' for S to handle, and giving h as the stream of execution requests. The resulting state after the

execution can be inconsistent, since S(h) ¢ C(T'). Thus, the scheduler is incorrect.

As a corollary of Theorem 3.1, the maximum-performance scheduler using information 1 is the one that has
its fixpoint set P = ﬂ.l,ﬂ C(T"). We call this scheduler the optimal scheduler for the level of information

I. (Notice that in practice there may be insurmountable difficulties — such as the negative complexity results

in [6] — in realizing the optimal scheduler for a given level of information.) The concept of information

T T e R T A AT T G T AR M PR TREWO N TR A SN € e o B

introduced here partially orders schedulers with respect to their sophistication: we say that S is more

sophisticatcd than §' if S operates at a level of information 1 that is properly included in the level of
information I of §, that is, I ¢ I. On the other hand, schedulers are also partially ordered with respect to
their performance: we say that S performs better than §' if Pg 2 Py. ‘Then the mapping from any level of | .,
information [to the fixpoint sct of the optimal scheduler for L1 1y, C(T"), is a natural isomorphism between |

these two partially ordered sets. This captures the fundamental trade-off between scheduler information and

performance, that is, if I ¢ I then Py 2 P for the optimal schedulers S and §' for 1 and I, respectively.

In the next scction, we present several examples of schedulers that are optimal for different levels of

information.

W

T
RN

M o e Ty g o et g B s T e e B I o lh L e an ST 1o L s st R e R e g - . s Kicapens

SECTION 4 OPTIMAL. SCHEDULERS 8

4. Optimal Schedulers

4.1 Optimal Schedulers for Extreme of information

Maximum Information

This is the case when complete information on the transaction system T in question is available to the
scheduler. The information level I in this case is a singleton set, ie., | = {T}. We can therefore define the
scheduler S, in principle at least, such that Py = C(T). This is the optimal scheduler for the maximum level of

information.

Minimum Information

If we only know the format of T, then we have the poorest possible level of information. What is the best
possible scheduler in this case? Consider a serial scheduler S which is defined to be a scheduler satisfying the

following property for any T:
S(H) = {all serial schedules of T} and P = {all serial schedules of T},

where serial schedules are defined in Section 3.1. By our basic assumption that each transaction is correct, we

see that each schedule in S(H) is correct.
Theorem 4.1: The serial scheduler S is optimal among all schedulers using the minimum information.

Proof Suppose that S is not optimal. Then there must exist a non-serial schedule in C(T) in which some

steps Ty, Ty, Ty,

assumption, [may contain transaction systems with any integrity constraints and interpretations for steps. We

, in T are exccuted in this order. Note that because of the minimum information

assume that the integrity constraints for some transaction system T’ in I correspond to "x=0", and that the

interpretations of function symbols are such that T, is {T,: x « x+1, T;, .:

{le: x « 2x}. We see that T, and Tj are correct, but the sequence {T,, le, T, ¢e1} is nOt correct for it may

x — x-1} and Tj is

transform a consistent state, x=0, into an inconsistent state, x=1. Thus, the schedule is not in C(T’). This

contradiction implies that for the minimum information case, the only correct schedules that a scheduler can

produce are serial schedules. Hence, the serial scheduler defined above is optimal. a

TR P e Yoy

o ET R A 2

i

TR S R o N

Ao

SECTION 4 OPTIMAL SCHEDULERS

4.2 Optimal Schedulers for Complete Syntactic Information

Suppose now that all syntactic information is available; that is, the information level has the property that [

is the set of all transaction systems with the same syntax. As in a similar situation in the theory of program

schemata, one can supplement this syntax with canonical semantics called Herbrand semantics (see [5] for a

detailed exposition). For all v € V, the domain IXv) is the set of all strings from the alphabet

Z2=Vu U‘i): i=L. . .,nj=1...,m} plus the symbols ")", "(", ",". If a ... aare clements of D(v),

then P, (@ ... aj). the interpretation of fu is the string fij @, ... aj). In other words, the Herbrand

interpretation captures all the history of the values of all global variables. We say that a schedule h is

serializable if its exccution rcsults are the same as the exccution results of some serial schedule under the

Herbrand scmantics. Since serial schedules are correct, so are serializable schedules. By SR(T) we denote the

set of all scrializable schedules of T. A serialization scheduler is defined to be a scheduler S satisfying the

following property for any T:
S(H) = SR(T) and P = SR(T).

Theorem 4.2: A scrialization scheduler is optimal among all schedulers using complete syntactic

AN RUYPRIITIR B 7ok n o TV L1 e L e we

information.

Proof. To prove the optimality, for any schedule h ¢ SR(T), we shall define a transaction system T' ¢ |
such that h ¢ C(T"). The semantics of T' are the Herbrand interpretation. Now, for the integrity constraints,
we define IC as follows. Assuine that T is consistent initially. Let (Vg - V) be the initial values of global
variables in V, where k = |V|. If a, .., a, are in 'D(v), we say that (a, ... a) € IC iff there exists a serial

concatenation Q (possibly empty) of some transactions in T' such that the initial values (v V) are

T A\ MR T

transformed by Q to (al, ak). By this definition, all transactions are individually correct, and our basic

assumption holds. Now, it is easy to see that, if h is any schedule, not in SR(T), then it transforms the initial

TN AP ST N TR e AV AT

values (v,, ..., V) to aset of values not in IC. Hence, h ¢ C(T"). a

The theorem shows that cven if complete syntactic information of a transaction system T is available to a

scheduler, SR(T) is the maximum possible set of correct schedules a scheduler can hope to produce. After all

syntactic information is the information one can easily extract in a transaction system, by having the users

declare the files that they intend to open, say. It is thercfore not at all surprising that most approaches to

concurrency control have serialization as their goal [2, 8, 7, 1, 6).

S a2

SECTION 4 OPTIMAL SCHEDULERS

4.3 Optimal Schedulers for Complete Seiiiantic Information but Integrity

Constraints
Consider the transaction system of Fig. 4-1.
T, T,
Ty X+ x+1 . Tyt x ¢+ x+1
T,,: x & 2x

12°

Figure 4-1: A ﬁansagtion system.
The schedule h = (T}, T,
are f, (f; (£, (x))) and £, (f, (f, (x))), whercas that of h is f, (£, (f; (x))). But with the given
T),). Hence, our

T,,) is not serializable since the Herbrand values for x of the two serial histories

interpretations of the fﬁ’s. h is seen to produce the same state as the serial history (T,,, T,;,
knowledge of the interpretations allows us to cxpand the set of correct schedules. It is not hard to see,
however, that the gains are delimited by a generalized notion of serialization, defined as follows. A schedule h
is said to be weakly serializable, if starting from any statc E the exccution of the schedule will end with a state
which is achievable by the execution of some concatenation of transactions in T, possibly with repetitions and
omissions of transactions, also starting from state E. Since transactions are assumed to be correct, a weakly
serializable schedule is correct. Denote by WSR(T) the set of all weakly serializable schedules of T. It is clear
that SR(T) ¢ WSR(T). A weak serialization scheduler is defined to be a scheduler S satisfying the following
property for any T:
S(H) = WSR(T) and Py = WSR(T).

Theorem 4.3: A weak serialization scheduler is optimal among all schedulers using all information but the

integrity constraints.

The proof is quite similar to the proof of Theorem 4.2, and is omitted.

4.4 Optimal Schedulers for Dynamic Syntactic Information

So i‘ar we have implicitly assumecd that the information of a scheduler about a transaction system is static in
nature, that is, prespecified and fixed. We now consider the case that information is dynamic, that is, the
amount of information available to a scheduler increases as the scheduler proceeds. We restrict ourselves
mainly to the important case of dynamic syntactic information.

At a given state (J, L, G) of a transaction system T, the dynamic syntactic information available to a
scheduler is the complete syntactic information on all transaction steps Tij's withl1 ci<n 1gj<jandon

those T, J+r 1 5 i g n, which are pending for execution. Thus, the set I corresponding to this level of

4
o Aa.a@um-mm’ﬁkﬁ,“~ d

SECTION 4 OPTIMAL SCHEDULERS 11

information consists of all transaction systems of the given format that arc syntactically identical to the one at
hand up to the specificd points. We can define by a straightforward generalization of the definition of Ps' the
fixpoint set P, of an optimal scheduler that uses dynamic syntactic information. By Theorem 4.2, we know
that P, must be containcd in the set SR(T) of serializable schedules of T Theorem 4.4 below characterizes P

exactly.

g oo

Optimal schedulers for dynamic syntactic information arc closcly related to schedulers that are

implemented by the well-known two-phase locking policy [2], which is defined informally as follows. (a) If a
transaction accesses x € V, then there is a Jock x step before the first access of x and an unlock x step after the
last, and (b) no lock step appears in any transaction after the first unlock step. Thus each transaction has two
phases: the locking phase, during which no locks can be released, and the unlocking phase, during which no
locks may be requested. Notice that rules (a) and (b) do not uniqucly specify the positions of lock-unlock

steps.

At L

A two-phase locking scheduler is simply a scheduler that treats transactions as though they were locked
according to some version of the two-phase locking policy. The fact that schedules output by a two-phase
| g locking scheduler are all correct follows from a proof in [2]. The following version of the two-phase locking

policy can be implemented by a scheduler using dynamic syntactic information.

A strong two-phase locking policy. For any x € V, lock x is always inserted immediately before the first
access of x, and unlock x occurs only after the last step of a transaction (or immediately before, in case that the

last step does not update x.)

Theorem 4.4: A two-phase locking scheduler corresponding to the strong two-phase locking policy is

optimal among all schedulers using dynamic syntactic information.

Proof* Suppose that h is a schedule not belonging to the fixpoint sct of the two-phase locking scheduler

defined in the theorem. Then there must exist transaction steps in h, say 'l‘“1 and Tzi,- such that
. lel is not the last step of transaction T,, i.e., j, <m,,
) lex and szz access the same variable x, and -

o these steps are scheduled in hin the order T, , ..., T, , .., Ty , and either T, updatesx, or T,
was not pending when Tij was scheduled for Execution. 1 1 1

We can construct a transaction system T = {T,, T,}, compatible with the syntactic information that was '

j |

follows:

available at the moment when 'I‘2j2 was scheduled, such that h ¢ C(T). Transaction system T is defined as i

ot oo

SECTION 4 OPTIMAL SCHEDULERS 12

Tla’ P Xe—X+1],
T ;: Xe—2ex,

Tlmx: Xe—x-1
all other steps are read steps, i.c., Tij: Xy & X and the integrity constraints is "x = 0." It is readily scen that

schedule h is not a correct onc for T, and thus the thecorem follows, 0

Note that the scheduler in Theorem 4.4 necd not really insert lock’s and unlock’s into transactions, as it can

just keep track the first occurrence of each variable in each transaction.

If a scheduler is given additional dynamic information, i.e., (a) the read-completion information -- indicating
the earliest point that a transaction has read all the global variables that it ever wants to access, and (b) the
last-use information -- indicating for each global variable in V the point in a transaction that the variable is
used (read or written) for the last time, then the scheduler may enjoy higher performance. Using the read-
completion and the last-use information the following version of the two-phase locking policy can be

implemented by a scheduler.

A weak two-phase locking policy. For any x € V, lock x is always inserted immediately before the first access

of x and unlock x occurs as early as possible, as long as the two-phasc locking requirement is still maintained.

Theorem 4.5: A two-phése locking scheduler corresponding to the weak two-phase locking policy is
optimal among schedulers using dynamic syntactic information plus the read-completion and the last-use

information.

Proof: Suppose that h is a schedule not belonging to the fixpoint sét of the two-phase locking scheduler
defined in the theorem. Then there must exist transaction steps, say lel and T2j2 in h, such that (a) these steps
are scheduled for execution in the above order, (b) T]‘jl and T;,j2 both access the same variable x, and (c) T“x is
not the last step in transaction T, that uses x, or (c’) le1 is not after the read-completion point for T,. For the
case of (c) we define the transaction system T to be the same as the one used in the proof of Theorem 4.4. For
the case of (c’_), we define the transaction system T = {T,, T,} to be such that

le D Xe—X+1,
T ;: ye2ey,
rye—y+l,
T::;: X—2ex,
all other steps are read steps, i.e., Tu: Xy < Xp and the integrity constraints is "x =y." We see that the

transaction system T defined in either case is compatible to the syntactic information available at the moment

when T”z is scheduled for execution while Timl is not yet pending, and that schedule h is not a correct one for
T. 0

papare iy vl .

L acerme

R e A AL

2 O o R

REFERENCES 13

References

1

(2]

3]

4]

5]

6]

gyl

8]

19

Berstein, P.A., Goodman, N., Rothnie, J.B. and Papadimitriou, C.H.
A System of Distributed Databases (the Fully Redundant Case).
IELE Transactions on Saftware Engineering SE-4:154-168, March, 1978.

Eswaran, K.P., Gray, J.N., Loric, R.A. and Traiger, LL.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.

Kung, H.T. and Lehman, P.L.

Concurrent Manipulation of Binary Search Trees.

ACM Transactions on Database Systems 5(3):354-382, September, 1980.

An cxtended abstract appears in the Proc. of the Fourth International Conference on Very Large
Databases., September 1978.

Lamport, L.
Towards a Theory of Correctness for Multi-user Data Base Systems.
Technical Report CA-7610-0712, Massachusctts Computer Associates, Inc., October, 1976.

Manna, Z.
Mathematical Theory of Computation.
McGraw-Hill, New York, 1974.

Papadimitriou, C.H.
The Serializability of Concurrent Updates.
Journal of the ACM 26(4):631-653, October, 1979.

Silberschatz, A. and Kedem, Z.
Consistency in Hierarchical Database Systems.
Journal of the ACM 27(1):72-80, January, 1980.

Stearns, R.E., Lewis, P.M. II and Rosenkrantz, D.J.
Concurrency Control for Database Systems.
In Proc . Seventh Annual Symposium on Foundations of Computer Science, pages 19-32. IEEE, 1976.

Yannakakis, M., Papadimitriou, C.H. and Kung, H.T.

Locking Policies: Safety and Freedom from Deadlock.

In Proc. Twentieth Annual Symposium on Foundations of Computer Science, pages 286-297 IEEE,
1979.

R T W R T TS T e S & T
G s el i ke - A

N DO R TR

PO AP S e it B 5

KT VP SN

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center f
Cameron Station
Alexandria, VA 22314

12 copies

Office of Naval Research
Information Systems Program
Arlington, VA 22217

2 oogies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 oopy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

Naval Research lLaboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 ies

Assistant Chief for Technology
800 N. Quincy Street

Office of Naval Research
Arlington, VA 22217

1 oopy

Washington, D. C. 20374

Office of Naval Research
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor

Commandant of the Marine Corps
(Code RD-1)

Washington, D. C. 20380

1 copy

Office of Naval Research
Arlington, VA 22217

1 ocopy

Naval Ocean Systems Center, Code 91
Headquarters-Camputer Sciences &
Simulation Department

San Diego, CA 92152

Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center
Computation & Math Department
Bethesda, MD 20084
1 oopy

Captain Grace M. Hopper, USNR
NAVDAC~-OOH
Department of the Navy

1 copy

T

